usingMaths.com
From Theory to Practice - Math You Can Use.







<< PreviousNext >>

Equation of a Circle in C++ | Animate Circular Motion using C++ Window Frame



Understanding the Equation of a Circle | Maths Explanation for C++ Kids

The equation of a circle is a fundamental concept in senior secondary mathematics and geometry. In this tutorial, we'll explore the circle equation formula, look at examples, and even show how to implement the equation of a circle in C++ for interactive learning.

The equation of a circle is expressed as (x - a)² + (y - b)² = r², where (a, b) is the centre and r is the radius. In C++, this equation allows us to compute x and y coordinates to draw or animate circles on a C++ window frame.

The equation of a circle helps determine all points (x, y) that are a fixed distance r from a centre (a, b). Let's explore how to convert this mathematical idea into C++ code.


Drawing a Circle Using the Circle Equation in C++

Circles are represented by the general equation
(x - a)2 + (y - b)2 = r2 ;
where (a, b) is the centre of the circle and r the radius.
In C++, this equation helps us calculate the x and y coordinates needed to draw or animate circular motion on a C++ window frame.

C++ circle equation diagram showing (x - a)^2 + (y - b)^2 = r^2
Figure: C++ circle equation diagram showing (x - a)² + (y - b)² = r²

Solving for y, we have:
(y - b)2 = r2 - (x - a)2
y - b = ±√(r2 - (x - a)2)
y = b ± √(r2 - (x - a)2)

This form lets us compute the upper and lower halves of a circle, perfect for visualizing circular paths or motion trajectories.


Parametric Equations of a Circle | Maths Explanation for C++ Kids

Circular motion can also be represented parametrically:

x = a + r * cos(θ)
y = b + r * sin(θ)

These equations make it easier to create smooth circular movement in C++, especially for animations, games, and physics simulations.


How to Find the Equation of a Circle - Step by Step C++ Algorithm

  1. Identify the centre and radius.
  2. Substitute them into the standard form of the circle equation.
  3. Expand if needed to get the general form of the circle equation.

This process is often used in senior secondary maths exams and problem-solving.

C++ Code: Animating Circular Motion

To animate a circular motion or move an object along a circle, we can increment x values between a - r and a + r, then compute y from the circle equation in C++.

Create a new C++ project; call it Dymetric.
Create 2 new C++ class files;
Call them Facet and CircularPath.
Type out the adjoining C++ code for animating an image body through the path of a circle.


How the C++ Circular Motion Animation Code Works

  • 'pow()' and 'sqrt()' implement the circle formula directly.
  • C++ Window Frame ('Ellipse') plots circular points.
  • The function 'moveCyclic()' simulates circular motion animation in C++ by redrawing the dot along the circle's upper and lower arcs.
  • Each frame updates x and y values according to the equation of a circle.

This animation demonstrates circular motion in C++ using algebraic updates derived directly from the circle equation.

Key Takeaways on Circular Path Animation in C++

In this tutorial, you've learned that:

  • The circle equation forms the foundation for circular motion and geometry in C++.
  • You can draw circles using Ellipse() or by calculating x and y using cosine and sine.
  • Animating objects in a circular path is just a time-based update of these coordinates.

Applications of Circle Equation in C++ Programming and STEM Education

Understanding how to derive motion from mathematical equations helps bridge geometry and programming. You can extend this principle to:

  • Draw circular regions and ellipses
  • Create rotating animations
  • Build interactive math visualizations using C++ Window Frame

FAQs: Circle Equation and C++

What is the equation of a circle?

The equation of a circle is (x - a)² + (y - b)² = r², where (a, b) is the centre and r is the radius.

How do I draw a circle in C++?

Use the C++ Window Frame and the Ellipse() method to draw a circle.

How else can I animate circular motion in C++?

Use the parametric equations x = a + r * cos(θ) and y = b + r * sin(θ) while incrementing θ inside a requestAnimationFrame loop for smooth animation.

Summary: Visualizing Circle Equation in C++

The circle equation in C++ helps us apply coordinate geometry to real-world programming. By using the mathematical formula (x - a)² + (y - b)² = r², we can easily draw and animate circles on the HTML5 <canvas>. This C++ tutorial has shown you how to calculate circle points, render them on the C++ window frame, and even simulate circular motion using mathematics.

The equation of a circle is a fundamental topic in geometry and senior secondary mathematics. By understanding the circle equation formula, practicing with examples, and experimenting with the C++ circle equation, you'll strengthen both your maths and coding skills.


So! C++ Fun Practice Exercise - Animate along Circular Path

As a fun practice exercise, try adjusting the centre points - a, b; and the radius - r to change the circle's position and size. This will be a great way to connect mathematics and programming, and help you understand more about C++ animations and circle equations.







C++ Circular Path Dymetric Window Code Stub


C++ Circular Path Canvas Frame and Button Controls - Header File

#pragma once

class Facet
{
public:
    Facet(HWNDintint);
    virtual ~Facet();
    bool decorateButton(WPARAMLPARAM);
    bool actionPerformed(HWNDWPARAMLPARAM);
    void informPaint();
};


C++ Circular Path Canvas Frame and Button Controls - Class File

#include "stdafx.h"
#include "Facet.h"
#include "CircularPath.h"

CircularPath* cyc_path;

/*
* Our custom class that interfaces between the parent window
* and the subsequent daemonstrator classes
*/

Facet::Facet(HWND hWndint window_widthint window_height)
{
    cyc_path = new CircularPath(hWndwindow_widthwindow_height);
}


/*
* This guy decorates buttons with colour and title text
*/

bool Facet::decorateButton(WPARAM wParamLPARAM lParam) {
    // button glide calling
    if (wParam == 12321)
    {
        LPDRAWITEMSTRUCT lpDIS = (LPDRAWITEMSTRUCT)lParam;
        
        SetDCBrushColor(lpDIS->hDC, RGB(255, 192, 203));
        SelectObject(lpDIS->hDC, GetStockObject(DC_BRUSH));

        RECT rect = { 0 };
        rect.left = lpDIS->rcItem.left;
        rect.right = lpDIS->rcItem.right;
        rect.top = lpDIS->rcItem.top;
        rect.bottom = lpDIS->rcItem.bottom;

        RoundRect(lpDIS->hDC, rect.left, rect.top, rect.right, rect.bottom, 50, 50);
        // button text
        DrawText(lpDIS->hDC, TEXT("MOVE"), -1, &rect, DT_SINGLELINE | DT_CENTER | DT_VCENTER);
        
        return TRUE;
    }
    return FALSE;
}

/*
* Call the target class' draw method
*/

void Facet::informPaint() {
    cyc_path->paint();
}


/*
* Say there is more than a single push button,
* this guy picks out the correct button that got clicked
* and calls the corresponding apt function
*/

bool Facet::actionPerformed(HWND hWndWPARAM wParamLPARAM lParam)
{
    switch (LOWORD(wParam))
    {
    case 12321:
        cyc_path->moveCyclic();
        return TRUE;
    default:
        return FALSE;
    }
}

Facet::~Facet()
{
    delete cyc_path;
}


C++ Animation Code for Circular Path - Header File

#pragma once

#define aWIDTH 10
#define aHEIGHT 10

class CircularPath
{
public:
    CircularPath(HWNDintint);
    virtual ~CircularPath();
    void paint();
    void moveCyclic();
protected:
    HWND hWindow;
    HDC hdc;
    int window_width;
    int window_height;
    COLORREF ball_colour;

    //circle coordinates
    int a;
    int b;
    const int r = 150;
    int x;
    int y;

    HPEN ball_pen;
    HBRUSH ball_brush;
};


C++ Animation Code for Circular Path - Class File

#include "stdafx.h"
#include "CircularPath.h"
#include <math.h>


CircularPath::CircularPath(HWND hWndint window_widthint window_height)
{
    hWindow = hWnd// save away window handle
    this->window_width = window_width// save away window width
    this->window_height = window_height// save away window width

    ball_colour = RGB(255, 0, 0);
    //circle coordinates
    a = 250;
    b = 265;
    
    x = a - r;
    y = b;

    // Pen and brush for travelling ball
    ball_pen = CreatePen(PS_SOLID, 1, RGB(0, 0, 0));
    ball_brush = CreateSolidBrush(ball_colour);

    hdc = GetDC(hWindow);

    SelectObject(hdc, ball_pen); // select ball pen colour
    SelectObject(hdc, ball_brush); // select ball brush colour
}

/*
* draws the ball/circle using the apt color
*/

void CircularPath::paint() {
    // draw a dot
    Ellipse(hdc, x, y, x + aWIDTH, y + aHEIGHT);
}

/*
* Repeatedly draws ball so as to simulate a continuous motion
*/

void CircularPath::moveCyclic() {
    // condition for continuing motion
    while (x <= a + r) {
        y = b - (int)round(sqrt(pow(r, 2) - pow((x - a), 2)));
        paint();

        y = b + (int)round(sqrt(pow(r, 2) - pow((x - a), 2)));
        paint();

        x += 20;
        // introduce a delay between renderings
        Sleep(50);
    }
}


CircularPath::~CircularPath()
{
    DeleteObject(ball_pen);
    DeleteObject(ball_brush);

    ReleaseDC(hWindow, hdc);
}





<< PreviousNext >>