usingMaths.com
From Theory to Practice - Math You Can Use.







<< PreviousNext >>

Solving Cubic Equations and Animating along Polynomial Curves in C# | Senior Secondary Mathematics



Using Polynomial equations in C#

In this C# polynomial equation tutorial, you'll learn how to model and animate a moving object along a cubic curve using mathematical formulas. This hands-on project demonstrates how to solve polynomial equations and translate them into visual motion-ideal for senior secondary students learning both math and coding.

Understanding Polynomial and Cubic Equations | Maths Explanation for C# Kids

A polynomial equation expresses a relationship involving powers of a variable. For a cubic curve, the general form is:
y = ax3 + bx2 + cx + d;
Here, a, b, c, and d are constants. Every third-degree polynomial equation has both a maximum and a minimum point. These turning points are useful in generating smooth motion when graphing or animating curves with C#.

Graph of cubic equation and polynomial curve in C#
Figure: Graph of cubic equation and polynomial curve in C#

Deriving the Equation of a Cubic Curve | Maths Explanation for C# Kids

To generate a cubic equation, all we will need are the maximum and minimum points of the curve.

y = ax3 + bx2 + cx + d  ----- (eqn 0)

By differentiating y = ax³ + bx² + cx + d, we get dy/dx = 3ax² + 2bx + c. Setting the derivative equal to zero at both the maximum and minimum points allows us to calculate a, b, c, and d.

dy/dx = yI = 3ax2 + 2bx + c
At maximum point, yI = 0
yI|(x = xmax) = 0
3axmax2 + 2bxmax + c = 0  ----- (eqn 1)
At minimum point, yI = 0
yI|(x = xmin) = 0  ----- (eqn 2)
3axmin2 + 2bxmin + c = 0
Subtracting both derived equations
yI|(x = xmax) - yI|(x = xmin)
⇒ 3a(xmax2 - xmin2) + 2b(xmax - xmin) = 0
2b(xmax - xmin) = -3a(xmax2 - xmin2)

b   =    -3a(xmax - xmin)(xmax + xmin)
2(xmax - xmin)

b = -3/2a(xmax + xmin)

Substituting b in (eqn 1)
3axmax2 + 2bxmax + c = 0
3axmax2 + 2(-3a/2)(xmax + xmin)xmax + c = 0
3axmax2 - 3axmax(xmax + xmin) + c = 0
3axmax2 - 3axmax2 - 3axmaxxmin + c = 0
c = 3axmaxxmin

From the general equation(eqn 0)
y = ax3 + bx2 + cx + d
ymax = axmax3 + bxmax2 + cxmax + d
Substituting for b & c
⇒ ymax = axmax3 - 3/2a(xmax + xmin)xmax2 + 3axmaxxminxmax + d
ymax = axmax3 - 3/2axmax3 - 3/2axmax2xmin + 3axmax2xmin + d
ymax = 1/2[2axmax3 - 3axmax3 - 3axmax2xmin + 6axmax2xmin + 2d]
ymax = 1/2[ -axmax3 + 3axmax2xmin + 2d]
2ymax = -a(xmax - 3axmin)xmax2 + 2d
2d = 2ymax + a(xmax - 3axmin)xmax2
d = ymax + a/2(xmax - 3axmin)xmax2


From the general equation(eqn 0)
y = ax3 + bx2 + cx + d
ymax = axmax3 + bxmax2 + cxmax + d
ymin = axmin3 + bxmin2 + cxmin + d
Subtracting both derived equations
ymax - ymin = a(xmax3 - xmin3) + b(xmax2 - xmin2) + c(xmax - xmin)
ymax - ymin = (xmax - xmin)[a(xmax2 + xmaxxmin + xmin2) + b(xmax + xmin) + c]
Substituting for b & c
ymax - ymin = (xmax - xmin)[a(xmax2 + xmaxxmin + xmin2) - 3a/2(xmax + xmin)2 + 3axmaxxmin]
ymax - ymin = a(xmax - xmin)[xmax2 + xmaxxmin + xmin2 - 3/2(xmax2 + 2xmaxxmin + xmin2) + 3xmaxxmin]
2(ymax - ymin) = a(xmax - xmin)[2xmax2 + 2xmaxxmin + 2xmin2 - 3(xmax2 + 2xmaxxmin + xmin2) + 6xmaxxmin]
2(ymax - ymin) = a(xmax - xmin)(2xmax2 + 2xmaxxmin + 2xmin2 - 3xmax2 - 6xmaxxmin - 6xmin2 + 6xmaxxmin)
2(ymax - ymin) = a(xmax - xmin)(-xmax2 + 2xmaxxmin - xmin2)
2(ymax - ymin) = -a(xmax - xmin)(xmax2 - 2xmaxxmin + xmin2)
2(ymax - ymin) = -a(xmax - xmin)(xmax - xmin)2
2(ymax - ymin) = -a(xmax - xmin)3

Hence:
a   =    -2(ymax - ymin)
(xmax - xmin)3

b = -3/2a(xmax + xmin)
c = 3axmaxxmin
        &
d = ymax + a/2(xmax - 3axmin)xmax2

These formulas form the mathematical basis of our C# polynomial solver.


Generating and Animating along a Cubic Polynomial Curve in C#

Once we determine the constants, we can implement a C# cubic equation solver to animate motion along the curve. The following example shows how to code a polynomial equation in C# using simple variables and C# windows form graphics.

To animate an object along a polynomial curve, increment x continuously and compute its corresponding y value using the cubic polynomial equation.

This C# code allows you to visualize the trajectory of a polynomial equation by plotting the curve dynamically on a C# windows form. The roots of the polynomial equation and the coefficients determine the shape and symmetry of the curve.

Create a new C# Windows Forms Application project ; call it Dymetric_CS.
Create 2 new C# classes;
Call them Dymetric and CubicPath.
Type out the adjoining C# code for animating an image body through the path of a cubic / polynomial curve.


Key Takeaways on Cubic Path Animation in C#

In this tutorial, you learned how to:

  • Understand and derive cubic polynomial equations
  • Find coefficients from maximum and minimum points
  • Implement a polynomial equation solver using C#
  • Animate an object along a polynomial curve

By combining algebraic reasoning with code, senior secondary students can see how mathematics powers real-world applications like animation, computer graphics, and game design.

Applications of Polynomial Equations C# Programming and STEM Education

Polynomial equations are used in:

  • Data modeling and curve fitting
  • Graphics programming for drawing smooth curves
  • Physics simulations and motion paths
  • Machine learning and optimization problems

Learning how to solve polynomial equations in C# provides a strong foundation for both mathematics and computational thinking.

Summary: Visualizing Polynomial Equations in C#

Polynomial equations are powerful tools for generating smooth, curved motion in graphics and animations. In this tutorial, you've learnt how to solve polynomial equations in C#, understand the mathematics of cubic curves, and create a simple animation that moves an image body along a polynomial equation path.

This interactive C# polynomial solver visually demonstrates how mathematical equations can be represented as real motion on a graph. It's a simple yet powerful example of combining coding and mathematics for educational purposes.


So! C# Fun Practice Exercise - Animate along Cubic Path

As a fun practice exercise, try modifying the values of xmax, xmin, ymax, and ymin to observe how they affect the polynomial equation graph. You can also:

  • Write a function to calculate the roots of the polynomial.
  • Compare your results with a quadratic equation solver.
  • Build a reusable polynomial equation solver in C#.








C# Cubic Path Window Display Code Stub


C# Cubic Path Code for Dymetric Class

using System.Windows.Forms;

namespace Dymetric
{
    class Dymetric
    {
        private CubicPath cube_curve;
        private bool do_simulation;

        public Dymetric(int screen_width, int screen_height)
        {
            cube_curve = new CubicPath(screen_width, screen_height);
            do_simulation = false;
        }

        // decide what course of action to take
        public void decideAction(PaintEventArgs e, bool click_check)
        {
            if (do_simulation && click_check)
            {
                // do animation
                cube_curve.inPlay(e);
                do_simulation = false;
            }
            else
            {
                // Put ball on screen
                cube_curve.clearAndDraw(e);
                do_simulation = true;
            }
        }
    }
}


C# Animation Code for Cubic Path Class

using System;
using System.Threading;
using System.Drawing;
using System.Windows.Forms;

namespace Dymetric
{
    class CubicPath
    {
        private int x_start, x_max, y_max, x_min, y_min, x, y;
        private double a, b, c, d;
        private const int dotDIAMETER = 10;

        // we'll be drawing to and from a bitmap image
        private Bitmap offscreen_bitmap;
        Graphics offscreen_g;

        private Brush dot_colour, bg_colour;

        public CubicPath(int screen_width, int screen_height)
        {
            dot_colour = new SolidBrush(Color.Yellow);
            bg_colour = new SolidBrush(Color.LightGray);

            // Create bitmap image
            offscreen_bitmap = new Bitmap(screen_width, screen_height - 55,
                System.Drawing.Imaging.PixelFormat.Format24bppRgb);

            // point graphic object to bitmap image
            offscreen_g = Graphics.FromImage(offscreen_bitmap);

            // Set background of bitmap graphic
            offscreen_g.Clear(Color.LightGray);

            x_start = x = 20;
            x_max = offscreen_bitmap.Width / 4 + 10;
            y_max = 20;
            x_min = 3 * offscreen_bitmap.Width / 4 - 10;
            y_min = offscreen_bitmap.Height - 70;

            // constants
            a = (-2 * (y_max - y_min)) / Math.Pow((x_max - x_min), 3);
            b = -((double)3 / 2) * a * (x_max + x_min);
            c = 3 * a * x_max * x_min;
            d = y_max + (a / 2) * (x_max - 3 * x_min) * Math.Pow(x_max, 2);

            y = (int)Math.Round(a * Math.Pow(x, 3) + b * Math.Pow(x, 2) + c * x + d);
        }

        // draw first appearance of dot on the screen
        public void clearAndDraw(PaintEventArgs e)
        {
            /*
             * draw to offscreen bitmap
             */

            // clear entire bitmap
            offscreen_g.Clear(Color.LightGray);
            // draw dot
            offscreen_g.FillEllipse(dot_colour, x, y, dotDIAMETER, dotDIAMETER);

            // draw to screen
            Graphics gr = e.Graphics;
            gr.DrawImage(offscreen_bitmap, 0, 55, offscreen_bitmap.Width, offscreen_bitmap.Height);
        }

        // repetitively clear and draw dot on the screen - Simulate motion
        public void inPlay(PaintEventArgs e)
        {
            Graphics gr = e.Graphics;
            // condition for continuing motion
            while (x < offscreen_bitmap.Width - dotDIAMETER && y >= y_max)
            {
                // redraw dot
                offscreen_g.FillEllipse(dot_colour, x, y, dotDIAMETER, dotDIAMETER);
                // draw to screen
                gr.DrawImage(offscreen_bitmap, 0, 55, offscreen_bitmap.Width, offscreen_bitmap.Height);

                x += 20;
                y = (int)Math.Round(a * Math.Pow(x, 3) + b * Math.Pow(x, 2) + c * x + d);
                // take a time pause
                Thread.Sleep(50);
            }
            x = x_start;
            y = (int)Math.Round(a * Math.Pow(x, 3) + b * Math.Pow(x, 2) + c * x + d);
        }
    }
}





<< PreviousNext >>